Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587496

RESUMO

Mycelium is the root-like network of fungi. Mycelium biocomposites prepared by template replication (molding) can function as environmentally friendly alternatives to conventional polystyrene foams, which are energy- and carbon-intensive to manufacture. Recently, several studies have shown that 3D bioprinting technologies can be used to produce high value functional mycelium products with intricate geometries that are otherwise difficult or impossible to achieve via template replication. A diverse range of nutrients, thickeners, and gelling agents can be combined to produce hydrogels suitable for 3D bioprinting. 3D bioprinting with hydrogel formulations infused with living fungi produces engineered living materials that continue to grow after bioprinting is complete. However, a hydrogel formulation optimized for intricate 3D bioprinting of Pleurotus ostreatus mycelium, which is among the strains most commonly used in mycelium biocomposite fabrication, has yet to be described. Here, we design and evaluate a versatile hydrogel formulation consisting of malt extract (nutrient), carboxymethylcellulose and cornstarch (thickeners), and agar (gelling agent), all of which are easily sourced food grade reagents. We also outline a reproducible workflow to infuse this hydrogel with P. ostreatus liquid culture for 3D bioprinting of intricate structures comprised of living P. ostreatus mycelium and characterize the changes in height and mass as well as hardness of the prints during mycelium growth. Finally, we demonstrate that the workflow does not require a sterile bioprinting environment to achieve successful prints and that the same mycelium-infused hydrogel can be supplemented with additives such as sawdust to produce mycelium biocomposite objects. These findings demonstrate that 3D bioprinting using mycelium-based feedstocks could be a promising biofabrication technique to produce engineered living materials for applications such as mushroom cultivation, food preparation, or construction of the built environment.

2.
Urolithiasis ; 52(1): 38, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413462

RESUMO

Intestinal microbiome dysbiosis is a known risk factor for recurrent kidney stone disease (KSD) with prior data suggesting a role for dysfunctional metabolic pathways other than those directly utilizing oxalate. To identify alternative mechanisms, the current study analyzed differences in the metabolic potential of intestinal microbiomes of patients (n = 17) and live-in controls (n = 17) and determined their relevance to increased risk for KSD using shotgun metagenomic sequencing. We found no differences in the abundance of genes associated with known oxalate degradation pathways, supporting the notion that dysfunction in other metabolic pathways plays a role in KSD. Further analysis showed decreased abundance of key enzymes involved in butyrate biosynthesis in patient intestinal microbiomes. Furthermore, de novo construction of microbial genomes showed that the majority of genes significantly enriched in non-stone formers are affiliated with Faecalibacterium prausnitzii, a major butyrate producer. Specifically pertaining to butyrate metabolism, the majority of abundant genes mapped back to F. prausnitzii, Alistipes spp., and Akkermansia muciniphila. No differences were observed in ascorbate or glyoxylate metabolic pathways. Collectively, these data suggest that impaired bacterial-associated butyrate metabolism may be an oxalate-independent mechanism that contributes to an increased risk for recurrent KSD. This indicates that the role of the intestinal microbiome in recurrent KSD is multi-factorial, which is representative of the highly intertwined metabolic nature of this complex environment. Future bacteria-based treatments must not be restricted to targeting only oxalate metabolism.


Assuntos
Microbioma Gastrointestinal , Cálculos Renais , Humanos , Oxalatos/metabolismo , Fatores de Risco , Bactérias/genética , Butiratos , Cálculos Renais/microbiologia
3.
Proc Natl Acad Sci U S A ; 121(2): e2303754120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165897

RESUMO

Eukaryotes originated prior to the establishment of modern marine oxygen (O2) levels. According to the body fossil and lipid biomarker records, modern (crown) microbial eukaryote lineages began diversifying in the ocean no later than ~800 Ma. While it has long been predicted that increasing atmospheric O2 levels facilitated the early diversification of microbial eukaryotes, the O2 levels needed to permit this diversification remain unconstrained. Using time-resolved geochemical parameter and gene sequence information from a model marine oxygen minimum zone spanning a range of dissolved O2 levels and redox states, we show that microbial eukaryote taxonomic richness and phylogenetic diversity remain the same until O2 declines to around 2 to 3% of present atmospheric levels, below which these diversity metrics become significantly reduced. Our observations suggest that increasing O2 would have only directly promoted early crown-eukaryote diversity if atmospheric O2 was below 2 to 3% of modern levels when crown-eukaryotes originated and then later met or surpassed this range as crown-eukaryotes diversified. If atmospheric O2 was already consistently at or above 2 to 3% of modern levels by the time that crown-eukaryotes originated, then the subsequent diversification of modern microbial eukaryotes was not directly driven by atmospheric oxygenation.


Assuntos
Eucariotos , Sedimentos Geológicos , Eucariotos/genética , Filogenia , Oxigênio , Células Eucarióticas
4.
ISME J ; 17(12): 2326-2339, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37880541

RESUMO

In many anoxic environments, syntrophic acetate oxidation (SAO) is a key pathway mediating the conversion of acetate into methane through obligate cross-feeding interactions between SAO bacteria (SAOB) and methanogenic archaea. The SAO pathway is particularly important in engineered environments such as anaerobic digestion (AD) systems operating at thermophilic temperatures and/or with high ammonia. Despite the widespread importance of SAOB to the stability of the AD process, little is known about their in situ physiologies due to typically low biomass yields and resistance to isolation. Here, we performed a long-term (300-day) continuous enrichment of a thermophilic (55 °C) SAO community from a municipal AD system using acetate as the sole carbon source. Over 80% of the enriched bioreactor metagenome belonged to a three-member consortium, including an acetate-oxidizing bacterium affiliated with DTU068 encoding for carbon dioxide, hydrogen, and formate production, along with two methanogenic archaea affiliated with Methanothermobacter_A. Stable isotope probing was coupled with metaproteogenomics to quantify carbon flux into each community member during acetate conversion and inform metabolic reconstruction and genome-scale modeling. This effort revealed that the two Methanothermobacter_A species differed in their preferred electron donors, with one possessing the ability to grow on formate and the other only consuming hydrogen. A thermodynamic analysis suggested that the presence of the formate-consuming methanogen broadened the environmental conditions where ATP production from SAO was favorable. Collectively, these results highlight how flexibility in electron partitioning during SAO likely governs community structure and fitness through thermodynamic-driven mutualism, shedding valuable insights into the metabolic underpinnings of this key functional group within methanogenic ecosystems.


Assuntos
Ecossistema , Euryarchaeota , Anaerobiose , Elétrons , Acetatos/metabolismo , Bactérias , Archaea , Euryarchaeota/metabolismo , Oxirredução , Hidrogênio/metabolismo , Formiatos/metabolismo , Metano/metabolismo
5.
Nat Commun ; 14(1): 5380, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666802

RESUMO

Anaerobic digestion of municipal mixed sludge produces methane that can be converted into renewable natural gas. To improve economics of this microbial mediated process, metabolic interactions catalyzing biomass conversion to energy need to be identified. Here, we present a two-year time series associating microbial metabolism and physicochemistry in a full-scale wastewater treatment plant. By creating a co-occurrence network with thousands of time-resolved microbial populations from over 100 samples spanning four operating configurations, known and novel microbial consortia with potential to drive methane production were identified. Interactions between these populations were further resolved in relation to specific process configurations by mapping metagenome assembled genomes and cognate gene expression data onto the network. Prominent interactions included transcriptionally active Methanolinea methanogens and syntrophic benzoate oxidizing Syntrophorhabdus, as well as a Methanoregulaceae population and putative syntrophic acetate oxidizing bacteria affiliated with Bateroidetes (Tenuifilaceae) expressing the glycine cleavage bypass of the Wood-Ljungdahl pathway.


Assuntos
Metagenoma , Águas Residuárias , Consórcios Microbianos/genética , Esgotos , Metano
6.
Cell Oncol (Dordr) ; 46(6): 1659-1673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37318751

RESUMO

BACKGROUND: Recent studies have uncovered the near-ubiquitous presence of microbes in solid tumors of diverse origins. Previous literature has shown the impact of specific bacterial species on the progression of cancer. We propose that local microbial dysbiosis enables certain cancer phenotypes through provisioning of essential metabolites directly to tumor cells. METHODS: 16S rDNA sequencing of 75 patient lung samples revealed the lung tumor microbiome specifically enriched for bacteria capable of producing methionine. Wild-type (WT) and methionine auxotrophic (metA mutant) E. coli cells were used to condition cell culture media and the proliferation of lung adenocarcinoma (LUAD) cells were measured using SYTO60 staining. Further, colony forming assay, Annexin V Staining, BrdU, AlamarBlue, western blot, qPCR, LINE microarray and subcutaneous injection with methionine modulated feed were used to analyze cellular proliferation, cell-cycle, cell death, methylation potential, and xenograft formation under methionine restriction. Moreover, C14-labeled glucose was used to illustrate the interplay between tumor cells and bacteria. RESULTS/DISCUSSION: Our results show bacteria found locally within the tumor microenvironment are enriched for methionine synthetic pathways, while having reduced S-adenosylmethionine metabolizing pathways. As methionine is one of nine essential amino acids that mammals are unable to synthesize de novo, we investigated a potentially novel function for the microbiome, supplying essential nutrients, such as methionine, to cancer cells. We demonstrate that LUAD cells can utilize methionine generated by bacteria to rescue phenotypes that would otherwise be inhibited due to nutrient restriction. In addition to this, with WT and metA mutant E. coli, we saw a selective advantage for bacteria with an intact methionine synthetic pathway to survive under the conditions induced by LUAD cells. These results would suggest that there is a potential bi-directional cross-talk between the local microbiome and adjacent tumor cells. In this study, we focused on methionine as one of the critical molecules, but we also hypothesize that additional bacterial metabolites may also be utilized by LUAD. Indeed, our radiolabeling data suggest that other biomolecules are shared between cancer cells and bacteria. Thus, modulating the local microbiome may have an indirect effect on tumor development, progression, and metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Humanos , Metionina/genética , Metionina/metabolismo , Escherichia coli/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Racemetionina/metabolismo , Proliferação de Células/genética , S-Adenosilmetionina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Mamíferos/metabolismo , Microambiente Tumoral
7.
Sci Data ; 10(1): 332, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244914

RESUMO

Oxygen-deficient marine waters referred to as oxygen minimum zones (OMZs) or anoxic marine zones (AMZs) are common oceanographic features. They host both cosmopolitan and endemic microorganisms adapted to low oxygen conditions. Microbial metabolic interactions within OMZs and AMZs drive coupled biogeochemical cycles resulting in nitrogen loss and climate active trace gas production and consumption. Global warming is causing oxygen-deficient waters to expand and intensify. Therefore, studies focused on microbial communities inhabiting oxygen-deficient regions are necessary to both monitor and model the impacts of climate change on marine ecosystem functions and services. Here we present a compendium of 5,129 single-cell amplified genomes (SAGs) from marine environments encompassing representative OMZ and AMZ geochemical profiles. Of these, 3,570 SAGs have been sequenced to different levels of completion, providing a strain-resolved perspective on the genomic content and potential metabolic interactions within OMZ and AMZ microbiomes. Hierarchical clustering confirmed that samples from similar oxygen concentrations and geographic regions also had analogous taxonomic compositions, providing a coherent framework for comparative community analysis.


Assuntos
Genoma Arqueal , Genoma Bacteriano , Bactérias/genética , Bactérias/metabolismo , Genômica , Microbiota , Oxigênio , Água do Mar/microbiologia , Archaea/genética , Archaea/metabolismo , Análise de Célula Única
9.
Curr Protoc ; 3(2): e671, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36801973

RESUMO

Gene-centric analysis is commonly used to chart the structure, function, and activity of microbial communities in natural and engineered environments. A common approach is to create custom ad hoc reference marker gene sets, but these come with the typical disadvantages of inaccuracy and limited utility beyond assigning query sequences taxonomic labels. The Tree-based Sensitive and Accurate Phylogenetic Profiler (TreeSAPP) software package standardizes analysis of phylogenetic and functional marker genes and improves predictive performance using a classification algorithm that leverages information-rich reference packages consisting of a multiple sequence alignment, a profile hidden Markov model, taxonomic lineage information, and a phylogenetic tree. Here, we provide a set of protocols that link the various analysis modules in TreeSAPP into a coherent process that both informs and directs the user experience. This workflow, initiated from a collection of candidate reference sequences, progresses through construction and refinement of a reference package to marker identification and normalized relative abundance calculations for homologous sequences in metagenomic and metatranscriptomic datasets. The alpha subunit of methyl-coenzyme M reductase (McrA) involved in biological methane cycling is presented as a use case given its dual role as a phylogenetic and functional marker gene driving an ecologically relevant process. These protocols fill several gaps in prior TreeSAPP documentation and provide best practices for reference package construction and refinement, including manual curation steps from trusted sources in support of reproducible gene-centric analysis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Creating reference packages Support Protocol 1: Installing TreeSAPP Support Protocol 2: Annotating traits within a phylogenetic context Basic Protocol 2: Updating reference packages Basic Protocol 3: Calculating relative abundance of genes in metagenomic and metatranscriptomic datasets.


Assuntos
Algoritmos , Software , Filogenia , Metagenômica/métodos , Alinhamento de Sequência
10.
Microbiol Resour Announc ; 12(2): e0075922, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36625650

RESUMO

We report the genome of Phormidium yuhuli AB48, which includes a circular chromosome and a circular plasmid (4,747,469 bp and 51,599 bp, respectively). This is currently the only closed reference genome of an isolate of the Phormidium genus, based on the Genome Taxonomy Database (GTDB), providing a potential model system for sustainable biotechnology innovation.

11.
Environ Microbiol ; 25(2): 241-249, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36369958

RESUMO

The current century marks an inflection point for human progress, as the developed world increasingly comes to recognize that the ecological and socioeconomic impacts of resource extraction must be balanced with more sustainable modes of growth that are less reliant on non-renewable sources of energy and materials. This has opened a window of opportunity for cross-sector development of biotechnologies that harness the metabolic problem-solving power of microbial communities. In this context, recovery has emerged as an organizing principal to create value from industrial and municipal waste streams, and the search is on for new enzymes and platforms that can be used for waste resource recovery at scale. Enzyme surface display on cells or functionalized materials has emerged as a promising platform for waste valorization. Typically, surface display involves the use of substrate binding or catalytic domains of interest translationally fused with extracellular membrane proteins in a microbial chassis. Novel display systems with improved performance features include S-layer display with increased protein density, spore display with increased resistance to harsh conditions, and intracellular inclusions including DNA-free cells or nanoparticles with improved social licence for in situ applications. Combining these display systems with advances in bioprinting, electrospinning and high-throughput functional screening have potential to transform outmoded extractive paradigms into 'trans-metabolic" processes for remediation and waste resource recovery within an emerging circular bioeconomy.


Assuntos
Biotecnologia , Enzimas , Reciclagem , Enzimas/química , Eliminação de Resíduos
12.
Microbiol Resour Announc ; 11(12): e0044722, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36409107

RESUMO

Here, we report metagenome-assembled genomes for "Candidatus Phormidium sp. strain AB48" and three cooccurring microorganisms from a biofilm-forming industrial photobioreactor environment, using the PacBio sequencing platform. Several mobile genetic elements, including a double-stranded DNA phage and plasmids, were also recovered, with the potential to mediate gene transfer within the biofilm community.

13.
Front Microbiol ; 13: 1018237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312919

RESUMO

Scientific and technological advances within the life sciences have enabled the generation of very large datasets that must be processed, stored, and managed computationally. Researchers increasingly require data science skills to work with these datasets at scale in order to convert information into actionable insights, and undergraduate educators have started to adapt pedagogies to fulfill this need. Course-based undergraduate research experiences (CUREs) have emerged as a leading model for providing large numbers of students with authentic research experiences including data science. Originally designed around wet-lab research experiences, CURE models have proliferated and diversified globally to accommodate a broad range of academic disciplines. Within microbiology, diversity metrics derived from microbiome sequence information have become standard data products in research. In some cases, researchers have deposited data in publicly accessible repositories, providing opportunities for reproducibility and comparative analysis. In 2020, with the onset of the COVID-19 pandemic and concomitant shift to remote learning, the University of British Columbia set out to develop an online data science CURE in microbiology. A team of faculty with collective domain expertise in microbiome research and CUREs developed and implemented a data science CURE in which teams of students learn to work with large publicly available datasets, develop and execute a novel scientific research project, and disseminate their findings in the online Undergraduate Journal of Experimental Microbiology and Immunology. Analysis of the resulting student-authored research articles, including comments from peer reviews conducted by subject matter experts, demonstrate high levels of learning effectiveness. Here, we describe core insights from course development and implementation based on a reverse course design model. Our approach to course design may be applicable to the development of other data science CUREs.

14.
Front Bioeng Biotechnol ; 10: 932695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046667

RESUMO

Despite their recognized potential, current applications of cyanobacteria as microbial cell factories remain in early stages of development. This is partly due to the fact that engineered strains are often difficult to grow at scale. This technical challenge contrasts with the dense and highly productive cyanobacteria populations thriving in many natural environments. It has been proposed that the selection of strains pre-adapted for growth in industrial photobioreactors could enable more productive cultivation outcomes. Here, we described the initial morphological, physiological, and genomic characterization of Phormidium yuhuli AB48 isolated from an industrial photobioreactor environment. P. yuhuli AB48 is a filamentous phototactic cyanobacterium with a growth rate comparable to Synechocystis sp. PCC 6803. The isolate forms dense biofilms under high salinity and alkaline conditions and manifests a similar nutrient profile to Arthrospira platensis (Spirulina). We sequenced, assembled, and analyzed the P. yuhuli AB48 genome, the first closed circular isolate reference genome for a member of the Phormidium genus. We then used cultivation experiments in combination with proteomics and metabolomics to investigate growth characteristics and phenotypes related to industrial scale cultivation, including nitrogen and carbon utilization, salinity, and pH acclimation, as well as antibiotic resistance. These analyses provide insight into the biological mechanisms behind the desirable growth properties manifested by P. yuhuli AB48 and position it as a promising microbial cell factory for industrial-scale bioproduction[221, 1631].

15.
ISME J ; 16(10): 2373-2387, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35810262

RESUMO

Methane produced by methanogenic archaea has an important influence on Earth's changing climate. Methanogenic archaea are phylogenetically diverse and widespread in anoxic environments. These microorganisms can be divided into two subgroups based on whether or not they use b-type cytochromes for energy conservation. Methanogens with b-type cytochromes have a wider substrate range and higher growth yields than those without them. To date, methanogens with b-type cytochromes were found exclusively in the phylum "Ca. Halobacteriota" (formerly part of the phylum Euryarchaeota). Here, we present the discovery of metagenome-assembled genomes harboring methyl-coenzyme M reductase genes reconstructed from mesophilic anoxic sediments, together with the previously reported thermophilic "Ca. Methylarchaeum tengchongensis", representing a novel archaeal order, designated the "Ca. Methylarchaeales", of the phylum Thermoproteota (formerly the TACK superphylum). These microorganisms contain genes required for methyl-reducing methanogenesis and the Wood-Ljundahl pathway. Importantly, the genus "Ca. Methanotowutia" of the "Ca. Methylarchaeales" encode a cytochrome b-containing heterodisulfide reductase (HdrDE) and methanophenazine-reducing hydrogenase complex that have similar gene arrangements to those found in methanogenic Methanosarcinales. Our results indicate that members of the "Ca. Methylarchaeales" are methanogens with cytochromes and can conserve energy via membrane-bound electron transport chains. Phylogenetic and amalgamated likelihood estimation analyses indicate that methanogens with cytochrome b-containing electron transfer complexes likely evolved before diversification of Thermoproteota or "Ca. Halobacteriota" in the early Archean Eon. Surveys of public sequence databases suggest that members of the lineage are globally distributed in anoxic sediments and may be important players in the methane cycle.


Assuntos
Euryarchaeota , Hidrogenase , Archaea/genética , Archaea/metabolismo , Citocromos/genética , Citocromos b/genética , Citocromos b/metabolismo , Euryarchaeota/metabolismo , Hidrogenase/metabolismo , Metano/metabolismo , Filogenia
16.
J Contam Hydrol ; 247: 103988, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35303484

RESUMO

With growing global use of methanol as a fuel additive and extensive use in other industrial processes, there is the potential for unintended release and spills into soils and aquifers. In these subsurface systems it is likely that methanol will be readily biodegraded; however, degradation may lead to the production of by-products, most importantly methane possibly resulting in explosion hazards and volatile fatty acids (VFAs) causing aesthetic issues for groundwater. In this study, the formation of these potentially harmful by-products due to methanol biodegradation was investigated in natural sand and silt sediments using microcosms inoculated with neat methanol (100%) ranging in concentration from 100 to 100,000 ppm. To assess the rate of degradation and by-product formation, water and headspace samples were collected and analyzed for methanol, volatile fatty acids (VFAs, including acetic, butyric, and propionic acid), cation (metal) concentrations (Al, Ca, Fe, K, Mg, Mn and Na), microbial community structure and activity, headspace pressure, gas composition (CH4, CO2, O2 and N2), and compound specific isotopes. Methanol was completely biodegraded in sand and silt up to concentrations of 1000 ppm and 10,000 ppm, respectively. Degradation was initially aerobic, consuming oxygen (O2) and producing carbon dioxide (CO2). When O2 was depleted, the microcosms became anaerobic and a lag in methanol degradation occurred (ranging from 41 to 87 days). Following this lag, methanol was preferentially degraded to acetate, coupled with CO2 reduction. Microcosms with high methanol concentrations (10,000 ppm) were driven further down the redox ladder and exhibited fermentation, leading to concurrent acetate and methane (CH4) generation. In all cases acetate was an intermediate product, further degraded to the final products of CH4 and CO2. Carbonates present in the microcosm sediments helped buffer VFA acidification and replenished CO2. Methane generation in the anaerobic microcosms was short-lived, but temporarily reached high rates up to 13 mg kg-1 day-1. Under the conditions of these experiments, methanol degradation occurred rapidly, after initial lag periods, which were a function of methanol concentration and sediment type. Our experiment also showed that methanol degradation and associated methane production can occur in a stepwise fashion.


Assuntos
Água Subterrânea , Metanol , Acetatos , Dióxido de Carbono/análise , Ácidos Graxos Voláteis , Água Subterrânea/química , Metano/metabolismo , Areia
17.
PLoS Biol ; 20(1): e3001508, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986141

RESUMO

The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor.


Assuntos
Archaea , Elétrons , Anaerobiose , Archaea/genética , Archaea/metabolismo , Genômica , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Oxirredução , Filogenia , Sulfatos/metabolismo
18.
Commun Biol ; 4(1): 1217, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686760

RESUMO

Recent studies on marine heat waves describe water temperature anomalies causing changes in food web structure, bloom dynamics, biodiversity loss, and increased plant and animal mortality. However, little information is available on how water temperature anomalies impact prokaryotes (bacteria and archaea) inhabiting ocean waters. This is a nontrivial omission given their integral roles in driving major biogeochemical fluxes that influence ocean productivity and the climate system. Here we present a time-resolved study on the impact of a large-scale warm water surface anomaly in the northeast subarctic Pacific Ocean, colloquially known as the Blob, on prokaryotic community compositions. Multivariate statistical analyses identified significant depth- and season-dependent trends that were accentuated during the Blob. Moreover, network and indicator analyses identified shifts in specific prokaryotic assemblages from typically particle-associated before the Blob to taxa considered free-living and chemoautotrophic during the Blob, with potential implications for primary production and organic carbon conversion and export.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Mudança Climática , Temperatura Alta/efeitos adversos , Água do Mar/microbiologia , Oceano Pacífico , Estações do Ano
19.
J Comput Biol ; 28(11): 1075-1103, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520674

RESUMO

Machine learning provides a probabilistic framework for metabolic pathway inference from genomic sequence information at different levels of complexity and completion. However, several challenges, including pathway features engineering, multiple mapping of enzymatic reactions, and emergent or distributed metabolism within populations or communities of cells, can limit prediction performance. In this article, we present triUMPF (triple non-negative matrix factorization [NMF] with community detection for metabolic pathway inference), which combines three stages of NMF to capture myriad relationships between enzymes and pathways within a graph network. This is followed by community detection to extract a higher-order structure based on the clustering of vertices that share similar statistical properties. We evaluated triUMPF performance by using experimental datasets manifesting diverse multi-label properties, including Tier 1 genomes from the BioCyc collection of organismal Pathway/Genome Databases and low complexity microbial communities. Resulting performance metrics equaled or exceeded other prediction methods on organismal genomes with improved precision on multi-organismal datasets.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Redes e Vias Metabólicas , Algoritmos , Proteínas de Bactérias/genética , Análise por Conglomerados , Aprendizado de Máquina , Microbiota
20.
Bioresour Technol ; 341: 125864, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34523581

RESUMO

Effects of powdered (<0.075 mm) biochar on thermophilic anaerobic digestion were investigated with biochemical methane potential (BMP) assays. The assays had substrate to inoculum ratios (SIR) of 2.2 and 4.4 g-volatile solids (VS)/g-VS and biochar dosing of 6 g/g-total solids (TS)inoculum. Compared to control, biochar amendment enhanced methane production rates by 94%, 75%, and 20% in assays utilizing substrates of acidified sludge at 70 °C, 55 °C and non-acidified mixed sludge, respectively. All controls experienced acute inhibition with lag phases from 12 - 52 days at SIR of 4.4 g-VS/g-VS, while assays with biochar generated methane from day 4. Biochar addition resulted in a rapid shift in microbial community structure associated with an increase in Methanothermobacteraeae (hydrogenotrophic) and Methanosarcinaceae archaea, as well as various volatile fatty acid (VFA)-degrading and hydrogen-producing bacteria. Biochar presents great potential to tackle VFA accumulation, abbreviate lag phase and increase methane rate, particularly at high organic loadings.


Assuntos
Reatores Biológicos , Microbiota , Anaerobiose , Carvão Vegetal , Digestão , Metano , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...